A SEARCH ON INTEGER SOLUTIONS TO THE NON-HOMOGENEOUS TERNARY QUINTIC EQUATION WITH THREE UNKNOWNS

$$
2\left(x^{2}+y^{2}\right)-3 x y=8 z^{5}
$$

T. Mahalakshmi ${ }^{1}$, P.Sowmiya ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy - 620 002, Tamil Nadu, India.

Email id: aakashmahalakshmi06@gmail.com
${ }^{2}$ PG Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy - 620 002, Tamil Nadu, India.

Email id: sowmiguna480@gmail.com

Abstract

:

This paper focuses on finding non-zero distinct integer solutions to the NonHomogeneous Ternary Quintic Diophantine Equation with three unknowns given by $2\left(x^{2}+y^{2}\right)-3 x y=8 z^{5}$.Various sets of distinct integer solutions to the considered quintic equation are studied through employing the linear transformations $x=u+v, y=u-v(u \neq v \neq 0)$ and applying the method of factorization.

KEYWORDS: Ternary Quintic, Non-Homogeneous Quintic, Integer Solutions.

INTRODUCTION:

The Theory of Diophantine equations offers a rich variety of fascinating problems. In particular, quintic equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity[1-4].For an extensive review of various problems, one may refer [5-16] for quintic equations with three and five unknowns. This communication concerns with yet another interesting non-homogeneous ternary quintic equation with three unknowns represented by $2\left(x^{2}+y^{2}\right)-3 x y=8 z^{5}$ for determining its infinitely many non-zero integral solutions through different methods.

METHOD OF ANALYSIS

The non- homogeneous quintic Diophantine equation to be solved for its non-zero distinct integer solution is

$$
\begin{equation*}
2\left(x^{2}+y^{2}\right)-3 x y=8 z^{5} \tag{1}
\end{equation*}
$$

To start with, observe that (1) is satisfied by the following integer triples

$$
(x, y, z):\left(2^{4} \alpha^{5 k}, 2^{3} \alpha^{5 k}, 2 \alpha^{2 k}\right),\left(2^{4} k\left(2 k^{2}-3 k+2\right)^{2}, 2^{4}\left(2 k^{2}-3 k+2\right)^{2}, 2\left(2 k^{2}-3 k+2\right)\right)
$$

However, there are other sets of integer solutions to (1) that are illustrated below:

ILLUSTRATION I:

Introduction of the linear transformations

$$
\begin{equation*}
x=u+v, \quad y=u-v, \quad u \neq v \neq 0 \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+7 v^{2}=8 z^{5} \tag{3}
\end{equation*}
$$

The above equation is solved for u, v and z through different methods and using (2), the values of x and y satisfying (1) are obtained which are presented below:

METHOD I:

After performing a few calculations, it is observed that (3) is satisfied by,

$$
\begin{align*}
& u=8^{3} m\left(m^{2}+7 n^{2}\right)^{2} \\
& v=8^{3} n\left(m^{2}+7 n^{2}\right)^{2} \tag{4}\\
& z=8\left(m^{2}+7 n^{2}\right)
\end{align*}
$$

In view of (2), the corresponding integer solutions to (1) are found to be

$$
\begin{align*}
& x=8^{3}(m+n)\left(m^{2}+7 n^{2}\right)^{2} \\
& y=8^{3}(m-n)\left(m^{2}+7 n^{2}\right)^{2} \tag{5}\\
& z=8\left(m^{2}+7 n^{2}\right)
\end{align*}
$$

METHOD II:

Assume

$$
\begin{equation*}
z(a, b)=a^{2}+14 b^{2} \tag{6}
\end{equation*}
$$

Case(i)

Write 8 as

$$
\begin{equation*}
8=(1+i \sqrt{7})(1-i \sqrt{7}) \tag{7}
\end{equation*}
$$

Using (6) and (7) in (3) and employing the method of factorization, consider

$$
\begin{equation*}
u+i \sqrt{7} v=(1+i \sqrt{7})(a+i \sqrt{7} b)^{5} \tag{8}
\end{equation*}
$$

Equating the real and imaginary parts, we get

$$
\begin{align*}
& u=a^{5}-35 a^{4} b-70 a^{3} b^{2}+490 a^{2} b^{3}+245 a b^{4}-343 b^{5} \\
& v=a^{5}+5 a^{4} b-70 a^{3} b^{2}-70 a^{2} b^{3}+245 a b^{4}+49 b^{5} \tag{9}
\end{align*}
$$

In view of (2), from (9) we obtain

$$
\left.\begin{array}{l}
x=2 a^{5}-30 a^{4} b-140 a^{3} b^{2}+420 a^{2} b^{3}+490 a b^{4}-294 b^{5} \tag{10}\\
y=-40 a^{4} b+560 a^{2} b^{3}-392 b^{5}
\end{array}\right\}
$$

Thus (6) and (10) represents the integer solutions to (1).

Case(ii)

Write 8 as

$$
\begin{equation*}
8=\frac{(5+i \sqrt{7})(5-i \sqrt{7})}{4} \tag{11}
\end{equation*}
$$

Using (6) and (11) in (3) and employing the method of factorization, consider

$$
\begin{equation*}
u+i \sqrt{7} v=(1+i \sqrt{7}) \frac{(5+i \sqrt{7})}{2}(a+i \sqrt{7} b)^{5} \tag{12}
\end{equation*}
$$

Equating the real and imaginary parts, the values of u and v are obtained as

$$
\begin{align*}
& u=\frac{1}{2}\left[5 a^{5}-35 a^{4} b-350 a^{3} b^{2}+490 a^{2} b^{3}+1225 a b^{4}-343 b^{5}\right] \\
& v=\frac{1}{2}\left[a^{5}+25 a^{4} b-70 a^{3} b^{2}-350 a^{2} b^{3}+245 a b^{4}+245 b^{5}\right] \tag{13}
\end{align*}
$$

Replacing a by 2 A and b by 2 B in (13), we obtain

$$
\begin{align*}
& u=80 A^{5}-560 A^{4} B-5600 A^{3} B^{2}+7840 A^{2} B^{3}+19600 A B^{4}-5488 B^{5} \\
& v=16 A^{5}+400 A^{4} B-1120 A^{3} B^{2}-5600 A^{2} B^{3}+3920 A B^{4}+3920 B^{5} \tag{14}
\end{align*}
$$

and replacing the same prodecure in (6) we get

$$
\begin{equation*}
z=4 A^{2}+28 B^{2} \tag{15}
\end{equation*}
$$

In view of (2), from (14) we obtain

$$
\left.\begin{array}{l}
x=96 A^{5}-160 A^{4} B-6720 A^{3} B^{2}+2240 A^{2} B^{3}+23520 A B^{4}-1568 B^{5} \\
y=64 A^{5}-960 A^{4} B-4480 A^{3} B^{2}+13440 A^{2} B^{3}+15680 A B^{4}-9408 B^{5} \tag{16}
\end{array}\right\}
$$

Thus (15) and (16) represents the integer solution to (1).

Note 1:

It is seen that 8 is also represented as follows
(i) $8=\frac{(11+i \sqrt{7})(11-i \sqrt{7})}{16}$
(ii) $8=\frac{(31+i \sqrt{7})(31-i \sqrt{7})}{121}$

Following the above procedure as in METHOD II, we obtain two more sets of integer solutions to (1) are obtained.

METHOD III

Equation (3) can be written as

$$
\begin{equation*}
u^{2}+7 v^{2}=8 z^{5} * 1 \tag{17}
\end{equation*}
$$

Case(i):

Write 1 on the R.H.S. of (17) as

$$
\begin{equation*}
1=\frac{(1+3 i \sqrt{7})(1-3 i \sqrt{7})}{64} \tag{18}
\end{equation*}
$$

Using (6),(7) \& (18) in (17) and utilizing the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=(1+i \sqrt{7})(a+i \sqrt{7} b)^{5}\left[\frac{(1+3 i \sqrt{7})}{8}\right] \tag{19}
\end{equation*}
$$

Equating the real and imaginary parts, the values of u and v are obtained as

$$
\begin{align*}
& u=\frac{1}{2}\left[-5 a^{5}-35 a^{4} b+350 a^{3} b^{2}+490 a^{2} b^{3}-1225 a b^{4}-343 b^{5}\right] \\
& v=\frac{1}{2}\left[a^{5}-25 a^{4} b-70 a^{3} b^{2}+350 a^{2} b^{3}+245 a b^{4}-245 b^{5}\right] \tag{20}
\end{align*}
$$

Replacing a by 2 A and b by 2 B in (20), we obtain

$$
\begin{align*}
& u=-80 A^{5}-560 A^{4} B+5600 A^{3} B^{2}+7840 A^{2} B^{3}-19600 A B^{4}-5488 B^{5} \\
& v=16 A^{5}-400 A^{4} B-1120 A^{3} B^{2}+5600 A^{2} B^{3}+3920 A B^{4}-3920 B^{5} \tag{21}
\end{align*}
$$

In view of (2), we obtain

$$
\left.\begin{array}{l}
x=-64 A^{5}-960 A^{4} B+4480 A^{3} B^{2}+13440 A^{2} B^{3}-15680 A B^{4}-9408 B^{5} \\
y=-96 A^{5}-160 A^{4} B+6720 A^{3} B^{2}+2240 A^{2} B^{3}-23520 A B^{4}-1568 B^{5} \tag{22}
\end{array}\right\}
$$

Thus (15) and (22) represent the integer solution to (1).

Case(ii)

Write 1 on the R.H.S. of (17) as

$$
\begin{equation*}
1=\frac{(3+i \sqrt{7})(3-i \sqrt{7})}{16} \tag{23}
\end{equation*}
$$

Using (6),(11) \& (23) in (17) and utilizing the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{7} v)=\frac{(5+i \sqrt{7})}{2}(a+i \sqrt{7} b)^{5}\left[\frac{(3+i \sqrt{7})}{4}\right] \tag{24}
\end{equation*}
$$

Equating the real and imaginary parts, the values of u and v are obtained as

$$
\begin{align*}
& u=a^{5}-35 a^{4} b-70 a^{3} b^{2}+490 a^{2} b^{3}+245 a b^{4}-343 b^{5} \tag{25}\\
& v=a^{5}+5 a^{4} b-70 a^{3} b^{2}-70 a^{2} b^{3}+245 a b^{4}+49 b^{5}
\end{align*}
$$

In view of (2), we obtain

$$
\begin{align*}
& x=-2 a^{5}-30 a^{4} b-140 a^{3} b^{2}+420 a^{2} b^{3}+490 a b^{4}-294 b^{5} \\
& y=-40 a^{4} b+560 a^{2} b^{3}-392 b^{5} \tag{26}
\end{align*}
$$

Thus (6) and (26) represent the integer solution to (1).

Note 2:

The integer 1 on the R.H.S of (17) is also expressed as below :

$$
\begin{array}{ll}
\checkmark & 1=\frac{(3+i 4 \sqrt{7})(3-i 4 \sqrt{7})}{121} \\
\checkmark & 1=\frac{(9+i 5 \sqrt{7})(9-5 i \sqrt{7})}{256} \\
\checkmark & 1=\frac{\left(7 r^{2}-s^{2}++i \sqrt{7} 2 r s\right)\left(7 r^{2}-s^{2}-i \sqrt{7} 2 r s\right)}{\left(7 r^{2}+s^{2}\right)^{2}}
\end{array}
$$

By considering suitable combinations of integers $8 \& 1$ from Note 1 and Note 2 respectively in (3), some more sets of integer solutions to (1) are obtained.

ILLUSTRATION II:

Introduction of the linear transformations

$$
\begin{equation*}
x=2(u+v), \quad y=2(u-v), \quad u \neq v \neq 0 \tag{27}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+7 v^{2}=2 z^{5} \tag{28}
\end{equation*}
$$

The above equation is solved for u, v and z through different methods and using (27), the values of x and y satisfying (1), are obtained which are illustrated below

Method IV:

After some algebra, it is seen that (28) is satisfied by,

$$
\begin{align*}
& u=2^{3} m\left(m^{2}+7 n^{2}\right)^{2} \\
& v=2^{3} n\left(m^{2}+7 n^{2}\right)^{2} \\
& z=2\left(m^{2}+7 n^{2}\right) \tag{29}
\end{align*}
$$

In view of (27), the corresponding integer solutions to (1) are found to be

$$
\begin{align*}
& x=2^{4}\left[m^{2}+3 n^{2}\right]^{2}(m+n) \\
& y=2^{4}\left[m^{2}+3 n^{2}\right]^{2}(m-n) \\
& z=2\left[m^{2}+3 n^{2}\right] \tag{30}
\end{align*}
$$

CONCLUSION:

In this paper, we have made an attempt to obtain all integer solutions to (1). As (1) is symmetric in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ it is to be noted that, if $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is any positive integer solution to (1),then the triples $(-x, y, z),(x,-y, z),(x, y,-z),(x,-y,-z),(-x, y,-z),(-x,-y, z)(-x,-y,-z)$ also satisfy (1).To conclude, one may search for integer solutions to the other choices of non-homogeneous ternary quintic diophantine equations along with suitable properties.

REFERENCES:

[1] Dickson, L.E. 1952. History of Theory of Numbers, Vol.11, Chelsea Publishing company, New York.
[2] Mordell, L.J. 1969. Diophantine equations, Academic Press, London.
[3] Telang, S.G. 1996. Number theory, Tata Mc Graw Hill publishing company, New Delhi .
[4] Carmichael, R.D. 1959. The theory of numbers and Diophantine Analysis, Dover publications, New York.
[5] S.Vidhyalakshmi, T.Mahalakshmi, V.Anbuvalli, M.A. Gopalan, "On non- homogeneous quintic equation with five unknowns $3\left(x^{4}-y^{4}\right)=4\left(z^{2}-w^{2}\right) T^{3}$, Vidyabharati International Interdisciplinary Research Journal, Special Issue On Recent Trends in Management, Science and Technology, 1969-1972, August 2021.
[6] M.A. Gopalan, S.Vidhyalakshmi, J.Shanthi, "The non- homogeneous quintic equation with five unknowns " $x^{4}-y^{4}+2 k\left(x^{2}+y^{2}\right)(x-y+k)=\left(a^{2}+b^{2}\right)\left(z^{2}-w^{2}\right) p^{3}$ ", Open Journal of Applied and theoretical Mathematics, Volume-2, Number-3, 08-13, September-2016
[7] M.A.Gopalan., and A. Vijsyashankar., Integral solutions of ternary quintic Diophantine equation $x^{2}+(2 k+1) y^{2}=z^{5}$ International Journal of Mathematical and Sciences, 19(1-2), 165-169,2010.
[8] M.A.Gopalan.,G. Sumathi and S. Vidhyalakshmi., Integral solutions of non-homogeneous ternary quintic equation in terms of pell equation JAMS, vol-6, No-1, 56-62,2013.
[9] M.A. Gopalan., S. Vidhyalakshmi., and K.Lakshmi., "Integral Solutions of the nonhomogeneous equation ternary quadratic Diophantine equation $a x^{2}+b y^{2}=(a+b) z^{5}, a>b>0 "$, Archimedes Journal of Mathematics, vol-3,No-2, 197204, 2013.
[10] M.A. Gopalan and G. Sangeetha, " Integral Solutions of ternary quintic Diophantine equation $x^{2}+y^{2}=\left(k^{2}+1\right) z^{5}$ ", Bulletin of Pure and Applied Sciences, vol-29, No-1, 2328, 2010.
[11] M.A.Gopalan., S. Vidhyalakshmi., and A. Kavitha, "Observations on the quintic equation with four unknowns $\left(x^{3}+y^{3}\right)\left(x^{2}+x y+y^{2}\right)+(x+y)\left(x^{2}+y^{2}\right) w^{2}=z\left(x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}\right) \prime$, Impact J. Sci. Tech., Vol.7, No-2, 15-19,2013.
[12] M.A.Gopalan., S. Vidhyalakshmi., and A. Kavitha, "On the quintic equation with four unknowns $x^{4}-y^{4}=2\left(k^{2}+l^{2}\right) z^{4} w "$, Bessel J.Math., 3(2), 187-193,2013.
[13] M.A.Gopalan., S. Vidhyalakshmi., A. Kavitha., and E.Premalatha, "On the quintic equation with five unknowns $x^{3}-y^{3}=z^{3}-w^{3}+6 t^{5}$ ", International Journal of Current Research, vol-5, Iss:6,1437-1440, 2013.
[14] M.A.Gopalan., S. Vidhyalakshmi., and A. Kavitha., "On the quintic equation with five unknowns $2(x-y)\left(x^{3}+y^{3}\right)=19\left(z^{2}-w^{2}\right) P^{3} "$, International Journal of Engineering Research Online, vol-1, Iss:2, 2013.

International Research Journal of Education and Technology
Peer Reviewed Journal
[15] M.A.Gopalan., V.Krithika., and A.Vijayasankar, " Integral solutions of nonhomogeneous quintic equation with five unknowns $3\left(x^{4}-y^{4}\right)=26\left(z^{2}-w^{2}\right) P^{3}$ ", International Journal of Research - GRANTHAALAYAH,Vol-5, Iss:8, 25-33, 2017.
[16] S.Vidhyalakshmi, T. Mahalakshmi, G. Dhanalakshmi, M.A. Gopalan, On The NonHomogeneous Quintic Equation with Five Unknowns $\left(x^{4}-y^{4}\right)=13 P^{3}\left(z^{2}-w^{2}\right)$, IAR J Eng Tech,1(1), 43-49,2020.

[^0] 10, no. 08, 2020, pp. 44-49.

[^0]: M.A.Gopalan, et. al. " On The Non-Homogeneous Quintic Equation With Five Unknowns $\mathbf{3}(\mathbf{x}+\mathbf{y})\left(\mathbf{x}^{\mathbf{3}}-\mathbf{y}^{\mathbf{3}}\right)=\mathbf{7}\left(\mathbf{z}^{\mathbf{2}}-\mathbf{w}^{\mathbf{2}}\right) \mathbf{p}^{\mathbf{3}}$." International Journal of Engineering and Science, vol.

